A pr 2 00 8 On the parabolic - elliptic limit of the doubly parabolic Keller – Segel system modelling chemotaxis

نویسنده

  • Lorenzo Brandolese
چکیده

We establish new convergence results, in strong topologies, for solutions of the parabolic-parabolic Keller–Segel system in the plane, to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under a natural smallness assumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the parabolic-elliptic limit of the doubly parabolic Keller–Segel system modelling chemotaxis

We establish new convergence results, in strong topologies, for solutions of the parabolic-parabolic Keller–Segel system in the plane, to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under...

متن کامل

Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis.

In two space dimensions, the parabolic-parabolic Keller-Segel system shares many properties with the parabolic-elliptic Keller-Segel system. In particular, solutions globally exist in both cases as long as their mass is less than a critical threshold M(c). However, this threshold is not as clear in the parabolic-parabolic case as it is in the parabolic-elliptic case, in which solutions with mas...

متن کامل

Finite-time Blow-up in a Degenerate Chemotaxis System with Flux Limitation

This paper is concerned with radially symmetric solutions of the parabolic-elliptic version of the Keller-Segel system with flux limitation, as given by ( ) ⎧⎨ ⎩ ut = ∇ · ( u∇u √ u2 + |∇u|2 ) − χ∇ · ( u∇v √ 1 + |∇v|2 ) ,

متن کامل

Nonlinear Stability of Large Amplitude Viscous Shock Waves of a Generalized Hyperbolic{parabolic System Arising in Chemotaxis

Traveling wave (band) behavior driven by chemotaxis was observed experimentally by Adler and was modeled by Keller and Segel. For a quasilinear hyperbolic parabolic system that arises as a non-di®usive limit of the Keller Segel model with nonlinear kinetics, we establish the existence and nonlinear stability of traveling wave solutions with large amplitudes. The numerical simulations are perfor...

متن کامل

A Class of Kinetic Models for Chemotaxis with Threshold to Prevent Overcrowding

We introduce three new examples of kinetic models for chemotaxis, where a kinetic equation for the phase-space density is coupled to a parabolic or elliptic equation for the chemo-attractant, in two or three dimensions. We prove that these models have global-in-time existence and rigorously converge, in the drift-diffusion limit to the Keller–Segel model. Furthermore, the cell density is unifor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009